THE RAMSAR CONVENTION AND ANIMAL AGRICULTURE

AN INTRODUCTORY GUIDE TO THE ISSUES AND OPPORTUNITIES

APRIL 2024
Foreword

Since the early 2000s, there has been increased interest from scientists and policy experts alike on the profound impacts of industrial animal agriculture on the environment.

We have seen growing awareness of animal agriculture’s significant contribution to global greenhouse gas emissions, accounting for at least 14.5% of all global GHG emissions. Industrial animal agriculture is also a leading driver of deforestation and biodiversity loss and constitutes nearly 30% of our global freshwater footprint.

Furthermore, industrial animal agriculture is driving destructive impacts to one of the critical ecosystems around the world—our wetlands. Wetlands are extraordinarily productive ecosystems and vital to life on earth. In addition to providing a source of freshwater for humans, they are home to rich biological diversity and they provide ecosystem services that sustain the health of the environment. The Convention on Wetlands of International Importance Especially as Waterfowl Habitat, known as the Ramsar Convention, is the primary international policy instrument for the conservation of wetland ecosystems and allows countries to designate certain wetlands as areas of “international importance.” More than half of these 2,000+ designated wetlands are reported to be negatively affected by agricultural activities.

Wetlands suffer threats on multiple fronts from industrial animal agriculture. Untreated animal waste leaks into wetland ecosystems and water resources leading to overnutrification and, in some instances, impacting human drinking water. Agrochemical pollution, including synthetic pesticides and fertilizers from crops grown to feed livestock, contaminate wetland ecosystems posing risks to human and ecosystem health.

This report, a collaboration between the Global Law Alliance for Animals and the Environment at Lewis & Clark Law School and Mercy For Animals, explores potential pathways under the Ramsar Convention that could support efforts to address the impacts of animal agriculture on wetlands.

We hope that this report will serve as a resource for environment and animal advocates around the world as they pursue novel policy avenues to end the environmental destruction caused by industrial animal agriculture.

Amelia Linn,
Director of Global Policy,
Mercy For Animals

Erica Lyman,
Clinical Professor of Law,
Global Law Alliance for Animals and the Environment
About Us

REPORT AUTHORED BY

Global Law Alliance for Animals and the Environment (the Global Law Alliance or GLA) at Lewis & Clark Law School is a champion for wild animals and wild spaces across the globe, working to protect animals and the environment through the development, implementation, and enforcement of international law. Law students (JD and LLM) actively participate in GLA’s work for academic credit.

Thank you to GLA law clerks Courtney McCoy, Miranda Herreid, Emily Torres, Robyn Pekala, and Antonia Langowski for their contributions.

COMMISSIONED BY

Mercy For Animals is an international nonprofit organization working to end industrial animal agriculture by constructing a just and sustainable food system. Operating in Brazil, Canada, India, Mexico, and the United States, we envision a world where animals are respected, protected, and free. Mercy For Animals uses legal advocacy, corporate campaigns, investigations, and public engagement to bring about meaningful change for animals.

© 2024 Mercy For Animals, Inc. All rights reserved.
Table of Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction to the Ramsar Convention</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2: Animal Agriculture and Wetlands</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 3: Wise Use and Preservation of Ecological Character</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 4: When Ecological Change Occurs</td>
<td>20</td>
</tr>
<tr>
<td>Conclusion</td>
<td>30</td>
</tr>
</tbody>
</table>
Introduction

Perhaps more than any other type of ecosystem, wetlands serve as indicators of how well, or how poorly, we are meeting the challenges of our time.

In fact, the United Nations Sustainable Development Goals (SDGs) and the Kunming-Montreal Global Biodiversity Framework (GBF) both recognize, explicitly or implicitly, the importance of wetlands to human development, ecological integrity, and conservation of biodiversity!

Concerned over the negative impacts that animal agriculture produces in wetlands, and in the ecosystems they anchor, this publication explores the ways in which the Convention on Wetlands of International Importance Especially as Waterfowl Habitat (also known as the Ramsar Convention)\(^2\) can support efforts to reduce such impacts.

To that end, this publication covers the following:

- A brief introduction to the Ramsar Convention, its purposes, and Party obligations;
- The ways and extent to which animal agriculture can impact wetlands, including Ramsar Sites;
- A deeper examination of core terms, obligations, and conditions under the Ramsar Convention, and their application to animal agriculture near wetlands, as developed through Resolutions, Recommendations, and other Convention materials; and
- Mechanisms under the Ramsar Convention, especially Ramsar Advisory Missions and the Montreux Record, and their potential to halt or modify the operation, or prevent the permitting of industrial animal agriculture near Ramsar Sites.
CHAPTER

01

Introduction to the Ramsar Convention
Introduction to the Ramsar Convention

The Ramsar Convention’s mission is “the conservation and wise use of all wetlands through local and national actions and international cooperation, as a contribution towards achieving sustainable development throughout the world.”

To achieve this mission, the Ramsar Convention establishes three main obligations, sometimes called the three “pillars” of the treaty. Specifically, the treaty asks Parties to:

1. Work towards the “wise use” of wetlands, whether or not designated as Wetlands of International Importance (Ramsar Sites);

2. Designate suitable wetlands for inclusion in the list of Wetlands of International Importance and “promote the conservation” and effective management of such Ramsar Sites;

3. Cooperate internationally on transboundary wetlands, shared wetland systems and shared species.
Under the Convention, wetlands are defined broadly as “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres.”

Certain wetlands, colloquially known as Ramsar Sites, are designated by the Parties according to criteria established in the treaty and elaborated on through Recommendation 4.2 (Criteria for Identifying Wetlands of International Importance). These criteria revolve around “international importance” vis-à-vis botany, zoology, limnology, or hydrology, with special emphasis on wetlands of international importance to waterfowl.

Recommendation 4.2 provides further guidance, breaking the criteria down into three main groups:

- Sites containing representative, rare, or unique wetland types,
- Sites of international importance for conserving biodiversity other than waterfowl,
- and Sites of international importance for the conservation of waterfowl.

Even though the listing decision remains unilaterally with the listing Party, Recommendation 4.2 provides a relatively clear rubric for assessing whether a wetland merits designation as a Ramsar Site.

Significantly, each Party must designate at least one Ramsar Site upon ratification or accession.

Parties may designate additional Ramsar Sites thereafter, extend the boundaries of existing Ramsar Sites, and, in the face of “urgent national interests,” delete or restrict the boundaries of existing Ramsar Sites.

Ultimately, the Parties may decide for themselves what constitutes an “urgent national interest,” but they have also adopted guidance that may be used to determine whether this threshold has been met. The guidance posits several considerations that weigh the costs and benefits of delisting or restricting the size of the Site.

Since its founding, the list of Ramsar Sites has grown to over 2,400 Sites covering more than 2.5 million square kilometers.
The Ramsar Convention comprises not just the treaty itself but multiple entities that support the ongoing policy work of the Convention, provide expert advice, and undertake the day-to-day work of administering the Convention.

The main policymaking body is the Conference of the Contracting Parties (or the COP). The body includes in its membership each State that has ratified the convention. Once a State has ratified the convention, it is known as a “Contracting Party” and it designates an Administrative Authority, which is typically a national agency, department, or Ministry, and a specific person to serve as the National Focal Point. The COP meets every three years to guide implementation of the Convention.

Between these meetings, other entities carry out the COP’s decisions. A Standing Committee meets annually to oversee the work of the Secretariat, address financial matters, and follow-up on matters as delegated by the COP. The Standing Committee meets approximately three times between each meeting of the COP.

The Secretariat functions as the administrative body of the Convention, supporting the work of the other bodies, organizing meetings, acting as a clearinghouse for information-sharing amongst the Contracting Parties and bodies, and undertaking any such other tasks as assigned. Finally, the Scientific and Technical Review Panel (STRP) provides expert advice as requested by the COP or Standing Committee and as prioritized in its triennial work plan.

Critically, the Parties to the Ramsar Convention recognize that designation as a Ramsar Site will not always translate into effective management. Accordingly, the Convention imposes upon Parties a duty to report to the Secretariat any instances of adverse change in the “ecological character” of a Ramsar Site resulting from human interference. While this information may be reported at any time, including with respect to sudden or disaster-related changes, the Contracting Parties are also required to submit annual reports that may contain this information. Third parties, such as NGOs, may also report adverse changes to the ecological character of a particular wetland. In cases of adverse change, the Parties have developed, through Resolutions, a pair of facilitative mechanisms, Ramsar Advisory Missions and the Montreux Record, to encourage improved management.

Animal agriculture, especially when conducted at an industrial scale, threatens the ability of Parties to satisfy both their “wise use” obligations and their obligations to “promote the conservation” and preserve the “ecological character” of Ramsar-listed wetlands.

Accordingly, this guide focuses primarily on

(a) the ways in which animal agriculture can clash with “wise use” and conservation obligations and

(b) how the Ramsar Convention can work to ameliorate harm to wetlands.
CHAPTER 02
Animal Agriculture and Wetlands
Animal Agriculture and Wetlands

Wetlands are one of the ecosystems suffering the most significant declines.19 Much of this decline is the direct result of the expanding agricultural sector, including, but not limited to, livestock production.20

In response to these impacts, the 13th meeting of the Conference of the Parties to the Ramsar Convention (that took place in 2018) prioritized engagement with the issue of sustainable agriculture, adopting relevant resolutions and tasking the Scientific and Technical Review Group with research regarding agricultural impacts on wetlands. Unfortunately, crop and grazing lands now cover nearly half of the Earth’s surface.21 According to a report drafted by the STRP and published by the Ramsar Convention Secretariat in 2021, this land conversion, in part, has led to a 35% decline in natural wetlands since 1970.22 And, importantly for the purposes of evaluating the role of the Ramsar Convention, data indicates that over half of Ramsar Sites are negatively affected by agriculture.23

More specifically, Ramsar reports have found agricultural threats to wetlands include, among others, water drainage (affecting 23% of Sites), livestock farming (affecting 25% of Sites), and pollution and effluent discharge (affecting 22% of Sites).24

The resulting resolutions and reports identify several impacts related to water regulation, pollution, and ecosystem modification. Increasing reliance on agrochemicals, water
consumption, and waste management in the context of livestock production are likely the most significant factors. The result is a grave risk to human health and livelihoods; degradation and destruction of habitat for resident and migratory species; and deterioration of the wetlands’ cultural, aesthetic, tourism, and ecosystem values.

WASTE POLLUTION

Animal waste is a significant source of pollution globally. Not only are the pollution impacts of livestock waste disproportionately greater than human waste, most animal waste goes untreated.

The disposal or leakage of animal waste, which includes nutrients, ammonia, phosphorus, antibiotics, hormones, and bacteria, into wetland systems, leads to overnutrification and associated knock-on effects and risks human and biodiversity health.

The nitrogen and phosphorus found in animal manure can be especially harmful to water resources. Together, these chemicals can cause eutrophication. Further, humans may also be exposed to industrial animal agriculture’s contaminants through both water ingestion and other means of water contact.

Elevated levels of nitrates in drinking water are associated with a variety of human health risks, including hyperthyroidism, diabetes, and multiple types of cancer. Levels high enough to be deemed “nitrate poisoning” can cause miscarriage, birth defects, and overall general poor health in adults.

In New Zealand, within the Awarua Wetland Ramsar Site, run-off from a dairy farm caused a decline of a keystone aquatic plant called Ruppia. Ruppia is a native seagrass that holds together the sediment at the bottom of the lagoon and limits erosion. It also takes up nutrients, generates oxygen, and provides food and shelter for fish and other species. It is seen as an indicator of water health. With too few Ruppia, water quality declines, overall biodiversity decreases, and algae begins to take over.

At the Awarua Wetland Site, the recovery of the species required a 50% reduction of nitrogen and phosphorus in the affected portion of the wetland.

Antibiotics, synthetic hormones, and pathogens that seep from animal waste into a wetland impact both, the species that rely on the wetland for their habitat and humans who interact with the water. For example, synthetic hormones are known to cause a reduction in female fish fertility, and the overuse of antibiotics means antibiotic resistance becomes a more widespread threat. All of these effects can appear in waters as far as 30 kilometers downstream from an industrial farm’s waste effluents, as the waste effluents accumulate in soils, drain into surface waters, and run off into ground waters.
Some of the same chemicals and pollution consequences noted above result from the use of fertilizers—in part, because animal waste itself is often used as a fertilizer, but also from the direct application of synthetic fertilizers.

According to a Ramsar briefing note on agriculture and wetlands, the total use of fertilizer comprises about 109 million tons of nitrogen and 41 million tons of phosphorus.34

Animal agriculture is one of the main contributors to this concerning scenario.

For instance, large amounts of synthetic fertilizers are used for cereal production, and almost 40% of the global cereal production is used to feed livestock.35

Cereals (i.e., wheat, maize, rice and barley) account for almost 60% of the global usage of synthetic nitrogen fertilizer.36

When these fertilizers enter wetland ecosystems, they result in eutrophication, increased productivity of invasive species, declines in native species, and higher rates of nutrient leaching, all of which can lead to significant broader ecological consequences.37

The use of agricultural pesticides is of growing concern for wetland pollution. Runoff and leaching of pesticide residues can be toxic to aquatic species, including fish.38 Pesticide use has increased globally, reaching a new high of over 3.5 million metric tons in 2021.39

Data from 2001 showed that 37% of pesticides used in the United States were applied to livestock feed crops.40

A Food and Agriculture Organization (FAO) report in 2008 indicated this could likely be extrapolated to other feed-producing countries.41
The Ramsar-protected cenotes (natural sinkholes or pits that form when limestone bedrock collapses and exposes groundwater underneath) of the Yucatán Peninsula are part of more than 50% of Wetlands of International Importance at risk from agricultural runoffs.42

Animal agriculture poses a particularly acute problem. As growth of the livestock sector outpaces that of crop production in most countries,43 inadequate waste management at livestock facilities generates increasing pollution.44 In a nutshell, this is precisely the state of affairs in the Anillo de Cenotes Ramsar Site, with the primary, but not exclusive, offender being large-scale pig operations. FAO expects Mexico to be one of three regions to experience the most detrimental effects to water quality by 2050, taking into consideration the 2000 levels of biological oxygen demand (BOD) in rivers compared to the levels anticipated in 2050.45 On the Yucatán peninsula, agricultural effects have already caused a measurable degradation of water quality.

A 2021 report on 173 cenotes in the Yucatán, including the 99 cenotes comprising the Anillo de Cenotes Ramsar Site, showed that 92% contained pollutants from various sources.46
Fecal sterols and microorganisms were the most commonly reported pollutants.47 Of these, \textit{E. coli} strains originating from pig feces were found to show multiple-drug show multiple-drug resistance.48 Another study also found microorganisms displaying antimicrobial resistance.49

Agricultural activities beyond the direct production of animals exacerbates the problem. According to the 2021 report, more than thirty cenotes are contaminated with organochlorine pesticides (OCPs).50 Many OCPs have been banned in Mexico for decades and are regulated by the Stockholm Convention, to which Mexico is a party. Despite this, OCPs’ presence in the studies indicates their continued use on area croplands.51 A leading report included a worrying caveat, noting that the findings are limited by the tools available to local laboratories, which may not have had the capability to detect endocrine disrupting chemicals or newer pesticides.52

The hydrological characteristics of the cenotes make them particularly vulnerable to pollution.53 The cenotes are an example of a type of geologic formation known as “karst.” Karst is a highly porous bedrock overlying an aquifer. Sinkholes, ground fissures, cracks, springs, underground streams, and caves are common features of a karstic region.54

The cenotes are karstic sinkholes which directly connect to the Great Mayan Aquifer (GMA) - one of the largest aquifers in the world. The bedrock overlying the GMA is karstic limestone.55

This type of terrain allows runoff and rainwater to quickly move from the surface to the water table below, in this case, the GMA.56 From their entry into these waters, pollutants can then flow tens of kilometers, reaching groundwaters located below thicker soil layers.57 Because groundwaters are not exposed to light, organic and inorganic contaminants can be more persistent.58 Significantly, this groundwater is the only water supply source in the Yucatán.59

An analysis of the Red List of Threatened Species of the prestigious International Union for Conservation of Nature (IUCN) shows that the majority of threatened species in the world suffer the loss of their habitats due to livestock activity.61
They provide habitat for aquatic plant life, marine mammals, and numerous species of fish. Mangroves serve as nurseries for many aquatic species like shrimp and, as a result, are often converted to commercial aquaculture operations. Because mangroves exist in coastal areas, they are vulnerable to upstream pesticides, fertilizers, and animal waste.

For example, the South China Sea is home to five Ramsar Sites and where 45 of the world’s 51 mangrove species grow. It is also home to a significant number of pig farms, and the mangroves are currently threatened by run-off which has caused “red-tide” algal blooms, killing more than 80% of the fish along this area of the southern China coast.

At least 307 Ramsar Sites identify as mangroves, and of those, 164 are affected by agriculture and aquaculture, according to the Ramsar database. Of those 164, 67 are affected by livestock farming and ranching and 60 are affected by marine or freshwater aquaculture, some Sites are affected by both.
CHAPTER 03

Wise Use and Preservation of Ecological Character
Wise Use and Preservation of Ecological Character

The Ramsar Convention’s primary goal is for Parties to adhere to “wise use” principles in order to avoid adverse changes to the “ecological character” of wetlands.

According to the Convention, Parties shall, to the greatest extent possible, “promote . . . the wise use of wetlands in their territory.”

Importantly, this obligation runs to all wetlands, not only Ramsar Sites. As the Ramsar website summarizes, when States become Parties to the Ramsar Convention, they “commit to work towards the wise use of all the wetlands and water resources in their territory[.]”

For Ramsar Sites, changes to “ecological character”—the chief hallmark of unwise use—trigger the possible use of Ramsar Advisory Missions and the Montreux Record.
“ECOLOGICAL CHARACTER”

As the Convention states in Article 3.2, Parties must report to the Secretariat “without delay” whenever the “ecological character” of a Site “has changed, is changing or is likely to change as the result of technological developments, pollution or other human interference.”

“Ecological character” is “the combination of the ecosystem components, processes and benefits/services that characterise the wetland at a given point in time.” The final, temporal clause of this definition is crucial: the “given point in time” in this context is the moment of designation on the Ramsar List. As Resolution VI.1 states,

“[c]hange in ecological character of a listed site should be assessed against the baseline status presented in the Information Sheet on Ramsar Wetlands, at the time of designation for the List (or at the time the Information Sheet was first provided to the [Secretariat]) if listing pre-dates the requirement to submit an Information Sheet at designation, together with any information which has been received subsequently.”

The types of changes that Parties are to report are human-induced changes.

Annex A of Resolution IX.1 provides that “change in ecological character of wetlands . . . is the human-induced adverse alteration of any ecosystem component, process, and/or ecosystem benefit/service.”

This definition encompasses almost any important adverse change to a wetland’s ecology. While truly de minimis change may not suffice, material change wrought by pollution or other aspects of animal agriculture certainly qualify.
“Wise use” is one of the three primary “pillars” of the Ramsar Convention. After several earlier iterations, the term is now defined as follows:

Wise use of wetlands is the maintenance of their ecological character, achieved through the implementation of ecosystem approaches, within the context of sustainable development. Thus, “wise use” is fundamentally an approach to wetlands management that attempts to achieve the treaty’s overarching goal of wetland conservation by actively managing a wetland and likely its multiple uses to avoid severe harm caused by unmitigated or unmanaged human development.

Over time, the Parties crystallized the relationship of sustainable development and wise use, emphasizing that wetland development is not a given and that, in fact, the preservation of the ecological character of wetlands serves the interests of sustainable development.

In Resolution IX.1 Annex A, A Conceptual Framework for the Wise Use of Wetlands and the Maintenance of their Ecological Character, the Parties stated that the phrase “in the context of sustainable development” is “intended to recognize that whilst some wetland development is inevitable and that many developments bring important benefits to society, developments can be facilitated in sustainable ways by approaches elaborated under the Convention, and it is not appropriate to imply that ‘development’ is an objective for every wetland.” Moreover, Resolution X113 ultimately concludes that ecological degradation of wetlands impoverishes communities.

Synthesizing these threads, the Convention website suggests that one way to conceptualize “wise use” is the “conservation and sustainable use of wetlands and all the services they provide, for the benefit of people and nature.” In keeping with this notion, Convention Information Paper No. 7 stresses that the ultimate test of wise use—or a practice’s compatibility with wise use— hinges on its ability to ensure that wetlands continue, simultaneously, to provide ecosystem services, support biodiversity, and maintain human well-being. And in line with the leading definition of “sustainable development” from the 1987 Brundtland Commission, which placed emphasis on preserving opportunities for future generations, the Ramsar website reminds Parties that they are expected to manage their Ramsar Sites so as to maintain their ecological character not just for present generations but also for generations to come.

“Wise use” of wetlands, then, lies at the intersection of ensuring wetlands provide ecological functions for the benefit of surrounding natural systems while simultaneously serving local human communities.

The concept in practice should manifest as wetlands retaining their natural, ecological character as well as their ability to provide for human populations—whether that is for food, tourism, cultural significance, or poverty alleviation.
CHAPTER 04
When Ecological Change Occurs
When Ecological Change Occurs

When the ecological character of a Site “has changed, is changing or is likely to change as the result of technological developments, pollution or other human interference,” the doors open to a pair of facilitative mechanisms designed to support Parties as they address the causes of the ecological change and realign wetland management with wise-use principles. These are Ramsar Advisory Missions (RAMs) and the Montreux Record.

Because animal agriculture can threaten to disrupt the “ecological character” of Ramsar Sites, RAMs and the Montreux Record fit nicely as tools with the potential to bring facts into focus and lead Parties toward improved management. RAMs and the Montreux Record are not traditional “compliance” mechanisms. Instead, their purpose is to enhance understanding of the ongoing harms and to explore ways by which these harms can be minimized or avoided. Both tools show promise in the amelioration of threats to Ramsar Sites from animal agriculture.
AN INTRODUCTION TO RAMSAR ADVISORY MISSIONS

RAMs involve a visit to a Ramsar wetland by a team of policy and scientific experts for the purpose of providing the “best available technical advice” as the host Party addresses changes to the ecological character of the Site. These visits occur when the host Party invites or agrees to a RAM.

The team observes and evaluates the overall health of the wetland and considers options that would aid in returning the Site to its ecological character at the time of listing. After a mission ends, the team produces a report summarizing the current state of the Site and provides recommendations that, in addition to focusing on the visited Site, bear relevance for other Parties with Sites facing similar issues. The finished reports are published on the Convention website and are available to the public at large.

A request for a RAM may center on either one or multiple issues, occurring either on-Site or off-Site. Typically, however, RAMs address complex, long-term environmental challenges rather than discrete, one-off issues.

Of the 90-plus RAMs undertaken since 1988, the most commonly occurring issues include adverse impacts from proposed industrial, residential, and tourism developments, and water management issues.

In considering RAM requests, the Secretariat prioritizes Sites facing problems shared with other listed Sites, with the hopes that lessons learned from one RAM can be applied to similar Sites.

RAMs are a resource-intensive and interdisciplinary undertaking, combining scientific and technical findings from a particular Mission with the results of other studies previously done at the Site. RAMs can have a robust scope, as they provide a comprehensive overview of the ecological character of the Site over a long period of time, often embedded within a broader survey of the surrounding region’s geography.

Further, RAMs often situate their analysis of the challenges at a particular Site within the content of the Party’s relevant governance structures, noting where existing legislation may be lacking.

The technical experts populating RAM teams comprise independent expert consultants, experts from another Party, experts employed by international organization partners, and members of the Convention’s Scientific and Technological Review Panel (STRP), depending on the exact circumstances and needs of the mission. The composition of the technical team aims to achieve a balance of external, international perspectives with particularized, Site-specific knowledge.

An average RAM involves three experts who visit the Site and surrounding area for one to ten days, meet with various stakeholders, and assess the issues raised in the RAM application.

Party Applications and Secretariat’s Response: Basic Chronology

1. **After a Party decides to seek a RAM, the Party must fill out an application with the Secretariat. The application must specify the Site in question and fulfill the requisites of Article 3.2 of the Ramsar Convention.**

2. **The RAM application is undertaken by the Party’s Administrative Authority, which is the national entity charged with the Convention’s domestic implementation.**

3. **Based on the submitted mission request, the Secretariat and Administrative Authority of the requesting Party collaborate to determine the mission’s scope and the required expertise.**

The technical experts populating RAM teams comprise independent expert consultants, experts from another Party, experts employed by international organization partners, and members of the Convention’s Scientific and Technological Review Panel (STRP), depending on the exact circumstances and needs of the mission. The composition of the technical team aims to achieve a balance of external, international perspectives with particularized, Site-specific knowledge. An average RAM involves three experts who visit the Site and surrounding area for one to ten days, meet with various stakeholders, and assess the issues raised in the RAM application.
THE RAM PROCESS: INITIATING A RAM, NGO OPPORTUNITIES, AND OUTCOMES

RAMs begin in a variety of ways, but no matter the impetus, the host Party is integral to the process. At times, the Party responsible for a Site initiates the RAM process and submits an application to the Ramsar Secretariat. A Ramsar Site manager who thinks a RAM is appropriate may liaise with its national Administrative Authority, the focal point for communications with the Ramsar Secretariat and the main national entity responsible for the implementation of the treaty, to explore the possibility of requesting a RAM. Alternatively, the Secretariat, if made aware that a listed Site is facing an adverse change in its ecological character by information from another Party or civil society, can propose to the host Party that a RAM may be appropriate. The initiation, development, and completion of a RAM is independent of the meeting cycles of the COP, Standing Committee, and STRP.

A Welcoming Approach Toward NGOs

María Rivera, the Secretariat’s Senior Advisor for the Americas, highlighted the importance of civil society in initiating action at Sites in recent remarks at a seminar on wetlands law:

“Any request that we receive, from a third party, we take it very seriously in the Secretariat. Immediately, we need to contact the concerned country and inform them that we have received these complaints or that something is happening on the Site. They need to provide us what are the measures that the government is taking in order to fulfill . . . the commitment of maintenance of ecological character. Of course, it’s up to the Party to request [a RAM].

-- María Rivera, Senior Regional Advisor for the Americas, Secretariat of the Ramsar Convention on Wetlands

When the Secretariat receives a communication that an adverse change in ecological character has occurred at a Site, whether from a third party or the Contracting Party, the Secretariat opens what it calls an “Article 3.2 case.” Opening such a case then requires communication between the Secretariat and the concerned Party, “with the aim . . . that contracting Parties take measures to solve the issues.” An Article 3.2 case may result in a RAM and/or Montreux Record listing, and the Secretariat does not “close those cases until the issue is resolved.” In the past, the Secretariat reported open Article 3.2 cases to the Standing Committee at its regular meetings, but now it reports only to the Conference of the Parties every three years. If the Secretariat deems that the Contracting Party has not taken the necessary steps to demonstrate a commitment to the maintenance or repair of the ecological character of a Site, including any recommendations arising from a RAM report, the Secretariat reports that the Site in question continues to be subject to an “open” Article 3.2 case.

One of the greatest benefits of a RAM is its ability to view the factors leading to the degradation of the Site and the potential solutions from a third-party perspective. Even when government actors have the best intentions, the fact that the issues may be managed across various ministries and different levels of government, in addition to changes in administrations, can make the management of a wetland (by the host country) challenging. In such cases, the experts comprising the mission can facilitate a shift from short-term goal-setting and reactive monitoring to strategic planning and adaptive management for long-term benefits, and they can bring together government sectors and levels (local, state, federal) with proposals and recommendations that may be unlikely without the benefit of third-party experts.
Joint Missions

Over three hundred Ramsar Sites have second—or even third—designations, meaning that not only are they wetlands of international importance, but they are also protected by other treaties.

The Anillo de Cenotes, for instance, is listed on the UNESCO world heritage tentative list. Inclusion on the tentative list indicates that a Party believes the site has “outstanding universal value,” making it “suitable” for inclusion on the World Heritage List.

Over ten RAMs have been carried out jointly with organizations such as the World Heritage Convention and the Convention on Migratory Species. The benefits of joint missions include cost sharing, a greater chance of impactful mission recommendations, and more attention from decision-makers and the public. However, joint missions can pose their own problems, such as the subordination of Ramsar interests to issues arising under another treaty, and a lack of cooperation between respective Secretariats following the mission’s end.

The missions are not limited in what they propose as solutions; in fact, the flexibility of the recommendation stage of the process is one of the program’s greatest assets. In some cases, the experts recommend basic elements of good governance as key to helping transition the wetland back to its baseline ecological character. For example, RAMs have recommended the establishment of task forces and monitoring committees, broad stakeholder engagement and participatory decision-making processes, education and awareness building, and environmental impact and evaluation processes. RAMs have also identified, in certain cases, government policies or decisions that have marginalized certain users or beneficiaries of wetlands and, as a result, those RAMs have made specific recommendations to incorporate traditional uses into management plans or to incorporate, regulate, and monitor unpermitted uses in order to bring such activities under regulatory frameworks and manage impacts. In some cases, the management plans themselves are adequate to protect the ecological character of a wetland but enforcement is a challenge. In these cases, a RAM may identify as much and recommend stronger efforts, including patrols, for example. Finally, in some cases, the mission experts might recommend that certain activities cease, either in perpetuity if they are inherently incompatible, or until such time as the wetland can be rehabilitated and restored and the activity adequately managed. For example, in the case of a wetland in Algeria, the RAM report recommended that a proposed dairy farm project be suspended and reappraised.

Within each of these “types” of recommendations, the RAM experts in any particular situation are likely to have detailed and specific recommendations addressing the nature and character of a particular wetland and its uses. This could range from recommending last-resort efforts like relocation of communities to specific management tools, such as shifting the type of local livestock production or the establishment of resource funds for the benefit of local communities. In sum, the nature of past recommendations reveals that the RAM process is a fit-for-purpose, flexible mechanism.

After the Party has the chance to review and comment on the report, it is published on the Convention website. The STRP analyzes and reviews completed reports, but any further action at the Site itself, such as the implementation of recommendations included in the report, is the prerogative of the Party. Again, in line with the notion that RAMs are not compliance mechanisms, Parties are not required to implement the recommendations or findings from RAM reports. However, any information about the RAM’s impacts, such as actions the Party elected to take in response to the RAM, should be included in the Party’s National Reports and other communications with the Secretariat.

Challenges and Critiques

Along with the possibility of inadequate follow-through by Site Parties, the RAM mechanism has been at times plagued by a lack of prioritization within the treaty community. Throughout the Convention’s history, the RAM mechanism has suffered from inconsistent treatment, such as its demotion from the Convention’s core budget. Furthermore, despite the hope that individual RAMs would generate findings applicable to other Sites in the future, this has not fully come to fruition. Instead, according to the STRP, the mechanism has been deployed in an ad hoc manner with scant evidence of lesson-learning over time.
In 2011, a joint mission under the Ramsar Convention and the World Heritage Convention traveled to Cabo Pulmo, one of the healthiest and most important coral reefs in Mexico, to assess the environmental threats of a proposed mega resort. The mission identified a series of major problems inherent in the project—problems irreconcilable with Cabo Pulmo’s ecology and status under both Conventions. Subsequently, but not immediately, the proposal was abandoned. Although difficult to say with certainty, it appears the joint mission, spurred on by local community and NGO advocacy, made a difference to the outcome.

Cabo Pulmo was not always a paragon of ecological balance. Yet, after significant degradation from irresponsible fishing practices in the 1970s and 80s, community-led restoration practices bore fruit, with Cabo Pulmo becoming a model for small-scale, sustainable eco-tourism. The community asked the Mexican Government to make Cabo Pulmo a national park in 1995. In 2005, Cabo Pulmo became a World Heritage Site. In 2009, it became a Ramsar Site.

Despite these advances, a major challenge to the area’s ecology was in the works. In 2008, a Spanish firm sought approval to build a mega resort complex, dubbed “Cabo Cortés,” in the
Along with benefits to the Site Party, the publication of RAM reports promotes transparency and information-sharing. Frequently, RAM recommendations mention a particular Site serving as a “test case” for other Sites.

Following the initial approval of the Cabo Cortés project in 2008 by Mexico’s environmental authority, public backlash was immediate. Local community organizations, international NGOS, legal advocates, and scientists worked in tandem to emphasize the ecological importance of Cabo Pulmo and the problems associated with the mega resort. Under the weight of this campaign, the Mexican government relented, officially requesting a joint mission by the World Heritage Convention and the Ramsar Convention in 2011. The joint mission took place from November 13 through 17, 2011. Among other issues, the team concluded that the government had failed to properly consider cumulative impacts, including other tourist projects in the vicinity and the inevitable urban growth that would accompany the mega resort, and had failed to articulate a plan to mitigate or otherwise address the potentially disastrous consequences of this growth. In terms of recommendations, the joint mission urged, inter alia, the government to convene an external scientific committee to evaluate the EIAs and made several specific recommendations about the Cabo Cortés project, including improved analysis of risks and impacts, conducting periodical monitoring, and developing mitigation measures.

After the mission ended in 2011, the community and non-profit organizations continued with a large media campaign to try to stop the project. The increased public pressure after the mission caused then-President Felipe Calderón to cancel the Cabo Cortés project in June 2012. According to President Calderón, the firm had not been able to show the project was environmentally sustainable, and therefore the permit was revoked.

The international and relatively high-profile character of a RAM has the potential to unlock funding for recommended actions and associated initiatives. Because RAMs often engage a broader array of actors than do national responses alone, they may lead to the procurement of financial assistance to support the implementation of RAM recommendations from “external agencies,” which is especially important for developing countries that may be financially unable to respond to Site issues unilaterally.

AN INTRODUCTION TO THE MONTREUX RECORD

While RAMs are information-gathering and advice-sharing ventures, the Montreux Record is the Convention’s “principal tool” for drawing attention to Sites “where an adverse change in ecological character has occurred, is occurring, or is likely to occur.” Although the triggering condition for a Montreux Record listing mirrors that of a RAM, the Montreux Record performs a different, and arguably more limited, function. Sites listed on the Montreux Record are given priority attention, including being first in line for the allocation of a RAM. The Montreux Record is maintained as part of the Ramsar Database and subject to continuous review.

According to experts, the Montreux Record may be underutilized. Despite the intention of the Record to serve as a dynamic spotlight for endangered Sites, the Montreux Record
has nonetheless garnered criticism for its “relatively static nature” due to Parties’ reluctance to add Sites that, technically speaking, belong in the Record.124 Reticent Parties wish to avoid the embarrassment of being named and shamed in what they perceive as a “black” or “red list.”125 However, despite the potentially negative perception of being included on the Record, a listing is not intended to be punitive.126 Potential stigma notwithstanding, many Parties have, in fact, nominated Sites for inclusion in the Record, as inclusion draws attention to Sites and emphasizes the need for further action and support.127 As of February 2024, the Montreux Record includes 46 Sites.128

THE MONTREUX RECORD PROCESS

For a Site to be added to the Montreux Record, a Party must contact the Secretariat and request the Site’s inclusion.129 To initiate this process, partner organizations, international or national NGOs, or other interested bodies may bring an adverse change in ecological character to the attention of the Site Party, or to the Secretariat, who will in turn reach out to the Party in question.130 Importantly, although anyone may reach out to the Secretariat to draw attention to a particular Site, inclusion of a Site on the Montreux Record can occur only with the relevant Party’s approval.131 After the Secretariat becomes aware of a change in ecological character at a particular Site, the Secretariat contacts the Party with the information the Secretariat received regarding the ecological change, alongside a “concise, voluntary questionnaire” to be returned to the Secretariat within approximately three months.132 If a Party elects to complete the questionnaire, the Secretariat forwards the document to the STRP.133 The Secretariat also forwards the completed questionnaire—or the Party’s refusal to complete the questionnaire, as the case may be—to whoever originally drew attention to the Site.134 The Secretariat then discusses the comments and advice provided by the STRP with the Party to determine next steps, such as whether a RAM should be carried out to gather additional information, or if the Site should be included in the Montreux Record.135 Following a Site’s inclusion in the Record, the Party is obligated to provide updates to the Secretariat on the conservation status of the Site as part of its triennial National Report.136

Removal of the Site from the Montreux Record occurs when the ecological character of the wetland is no longer at risk, as indicated by the Party or other experts.137 Upon receipt of this information, the Secretariat submits a questionnaire to the Party, which, following the questionnaire’s completion, is forwarded to the STRP for review.138 The Secretariat then forwards the STRP’s technical comments, advice, and any requests for further information to the Party concerned.139 Significantly, the Party may request a Site visit as part of the process by which to determine whether or not the removal of a Site from the Record is appropriate.140 In keeping with the overall touchstone of consent, the Party, after reviewing the responses from the STRP, makes the final decision as to the removal from the Record.141 Lastly, the Secretariat informs other interested bodies of the Party’s decision.142
RAMs and the Montreux Record are complementary but distinct tools that aid Parties in responding to environmental challenges faced at individual Ramsar Sites. A RAM provides a Party with technical and scientific advice to address adverse changes in the ecological character of a Site, highlights a Party’s commitment to the Convention, contributes an international perspective to combat management paralysis or regulatory deadlock, and promotes transparency and information-sharing within the treaty community. The Montreux Record, for its part, spotlights Sites with the greatest need for remedial action.

While the two mechanisms can function independently, they can also build upon one another: the Montreux Record focuses attention on Sites with an acute need for action, which can serve as an impetus for a RAM. In other cases, a RAM’s findings can lead to placement on or removal from the Montreux Record. As of 2016, at least half of the RAMs carried out at Sites included on the Montreux Record were followed by the eventual removal of Sites from the Record. In the opposite direction, as of 2016, at least one Site was added to the Montreux Record because of a RAM’s findings.
Conclusion

The Ramsar Convention provides meaningful opportunities to address the egregious impacts of animal agriculture on wetlands.

In addition to the important research and publications that the Ramsar Secretariat and the STRP have already undertaken to highlight this issue, an NGO that wishes to draw attention to a particular Site may leverage the RAM and the Montreux Record as catalysts for action. Particularly where the issue has previously faced deadlock or stagnation at a national level, these Ramsar mechanisms may prove consequential, prompting the concerned State to change course. Both mechanisms highlight the presence of an adverse change in the ecological character of a listed wetland, with the RAM exploring the environmental challenges faced by a Site and the Montreux Record highlighting a pressing need for action at a Site. Although both RAMs and the addition of a Site to the Montreux Record require the consent of the Party concerned, both avenues also give interested NGOs the opportunity to reach out to the Party or to the Ramsar Secretariat to spur positive movement.
Karl W. Kaufmann, Our Wetlands, Our Future. Conservation Plan for the Wetlands of the Bay of Panama, Panama Audubon Soc’y, 16 Մ2012Յ.

Ramsar Convention, Art. 3.2.

See Dave Pritchard, Consultant Report: Change in ecological character of wetland sites—a review of Ramsar guidance and mechanisms Մ2014Յ,

Pablo Antonio Moreno-Gómez, Marivel Hernández-Téllez & Arelly Bautista-Gálvez, In Danger One of the Largest Aquifers in the World, the Great Mayan Aquifer, Available at

Ramsar Convention, Resolution IX 1990, p. 15.

Ramsar Convention, Resolution IX.1 Annex A ¶ 19 (2005), available at

Ramsar Convention, Resolution IX.1 Annex A ¶ 19 (2005), available at

Ramsar Convention, Resolution IX.1 Annex A ¶ 19 (2005), available at

The advisory character of RAMS is reflected in the name itself. As the name suggests, RAMs are advisory exercises with the goal of providing a Party with "the best available technical advice." RAMs often make an explicit disclaimer to this effect (i.e., a statement that they are not compliance mechanisms and are in no way binding on Parties).

Id.

Id.

See, e.g., RAM report 83, at 1–2; RAM report 87, at 8–10.

See, e.g., RAM report 83, at 15–18.

The involvement of technical experts from other Contracting Parties in RAMs shows the missions' function "as a means of increasing international cooperation, sharing experience and building capacity for wetland conservation" at an intra-regional scale. STRP, at 23.

Such experts might include WWF, IUCN, or BirdLife. STRP, at 21–22.

According to the STRP, it has been surprisingly underutilized as technical experts directly participating in RAMs. STRP, at 22.

Involvement of technical experts from other Contracting Parties in RAMs shows the missions' function "as a means of increasing international cooperation, sharing experience and building capacity for wetland conservation" at an intra-regional scale.

Such experts might include WWF, IUCN, or BirdLife.

According to the STRP, it has been surprisingly underutilized as technical experts directly participating in RAMs.

See, e.g., RAM report 83, at 1–2; RAM report 87, at 8–10.

See, e.g., RAM report 83, at 15–18.

The advisory character of RAMS is reflected in the name itself. As the name suggests, RAMs are advisory exercises with the goal of providing a Party with "the best available technical advice." RAMs often make an explicit disclaimer to this effect (i.e., a statement that they are not compliance mechanisms and are in no way binding on Parties).

Id.

Id.

The Montreux Record Questionnaire is available at the following link: https://rsis.ramsar.org/ris-search/?f%5B0%5D=montreuxListed_b%3Atrue (accessed Feb. 23, 2024).
“Beautiful sunset at Talay-Noi Ramsar Sites”, by p_sarun, Getty Images

“fisherman life, fishing boat, wetlands, Fishing communities, countryside” by farnfnz, Getty Images

“Wetland View”, cby Leung Cho Pan, Getty Images

“Cabo Pulmo”, by Martina Pal, Getty Images

“The Columbia Wetlands”, by dnsphotography, Getty Images

“Wetland buffalo”, by Kumarn, Getty Images

“The Great Mayan Aquifier”, by Pedro Almada, Getty Images

“Agriculture”, by africanpix from Getty Images

“Ruppia Maritima Plant” by Boys in Bristol Photography, Pexels

“Pesticide treatment”, by gilaxia, Getty Images

“Scuba diving in the Casa Cenote, Mexico” by divepics, Getty Images